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Abstract. The parameters defining vulnerability in graph theory can be used as an indicator of the service quality

over the network, if nodes or links fail. In the field of graph theory, numerous vulnerability parameters have been

defined, including toughness, rupture degree, tenacity, integrity, connectivity, and others. Fuzzy graphs, a specific

type of graphs, provide a more effective method of modelling real-world problems than other graphs. This is due

to the fact that the uncertainties inherent in the problems can be expressed in a more realistic manner through

the use of membership values. However, despite this advantage, there has been limited research conducted on the

vulnerability parameters in fuzzy graphs. In this paper, the node connectivity parameter for fuzzy wheel graphs,

fuzzy cycle graphs, and fuzzy star graphs are researched and some general formulas are obtained. Additionally,

the algorithms are given to find the strength of connectedness between any two nodes and the node connectivity

of the given fuzzy graph.
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1 Introduction

Networks are composed of nodes and links that connect them. Examples of such networks
include biological networks, social networks, communication networks, and so on. One of the
mathematical tools that can be used to model networks is graph theory. Graph theory provides a
variety of analytical tools for networks, including graphs defined in different ways and parameters
defined for different graph types. One such parameter is the vulnerability parameter (Barefoot
& Entringer, 1978).

A network’s vulnerability can be measured using graph parameters like connectivity (Harary,
1969), integrity (Barefoot & Entringer, 1978), tenacity (Cozzens et al., 1995), toughness (Chvatal,
1973), and rupture degree (Li et al., 2005). Connectivity is the number of non-functioning ele-
ments in a graph which is the oldest parameter studied.

A specific type of graphs is called a fuzzy graph. Fuzzy graphs allow any real number between
0 and 1 to represent the degree of flow or membership value that indicates how related any two
nodes are. Modeling by grading the relations will provide a more accurate depiction of reality in
a world where things are not always black and white. Fuzzy graphs are especially useful when
there is uncertainty about the nodes and/or links (arcs) in question. Fuzzy graphs are therefore
a useful tool for more accurately simulating real-world issues. Rosenfeld (1975) and Yeh & Bang
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(1975) independently defined fuzzy graphs in 1975 based on the ideas of fuzzy sets and fuzzy
relations established in Zadeh (1965).

While the current literature on other types of graphs gives a thorough definition of vulner-
ability parameters, they are less commonly specified in the context of fuzzy graphs. Rosenfeld
(Rosenfeld, 1975) discovered fuzzy analogues of numerous core graph-theoretical structural con-
cepts and conceptions of connectedness, whereas (Yeh & Bang, 1975) proposed a framework for
comprehending fuzzy graph connectivity.

The literature defines a number of vulnerability parameters for fuzzy graphs. For example,
(Mathew & Sunitha, 2010) offered a revision of the connectivity parameter based on Rosenfeld’s
notion of connectedness Rosenfeld (1975), Ali et al. (2018) defined average fuzzy vertex connec-
tivity and total fuzzy vertex connectivity Additionally, Saravanan et al. (2015) established an
integrity parameter for fuzzy graphs, and Binu et al. (2019) defined a connectivity index.

In this study, the node connectivity parameter is studied for some fuzzy graphs, such as
fuzzy wheel graphs, fuzzy cycle graphs, and fuzzy star graphs. The general formulas are derived
based on the membership values. Furthermore, the algorithms are designed to ascertain the
strength of connectedness between any two nodes and the node connectivity of the provided
fuzzy network.

2 Preliminaries

In this section some basic definitions are given. The definitions not given here can be found in
Altundag (2021); Mathew & Sunitha (2010); Mordeson & Nair (2000).

A fuzzy graph G : (V, σ, µ) is a nonempty set V together with a pair of functions σ : V → [0, 1]
and µ : V ×V → [0, 1] such that for all u, v ∈ V , µ(u, v) ≤ σ(u)∧σ(v) (Mordeson & Nair, 2000).

An edge of a fuzzy graph is called arc. If an arc has the least membership value in a fuzzy
graph, then it is called weakest arc. d(µ) = ∧{µ(u, v) | (u, v) ∈ µ∗} is called the depth of µ and
h(µ) = ∨{µ(u, v) | (u, v) ∈ µ∗} is called the height of µ (Bhutani et al., 2004).

Multimin cycle refers to a fuzzy cycle that includes more than one weakest arc.It is said to
be a locamin cycle if each node is connected to a weakest arc of the cycle (Bhutani & Rosenfeld,
2003b).

A multimin cycle is a fuzzy cycle with more than one weakest arc and a locamin cycle is a
fuzzy cycle with each node incident with a weakest arc (Bhutani & Rosenfeld, 2003b).

The strength of connectedness between two nodes, designated as u and v, is defined as the
maximum value of the strengths observed across all paths between the two nodes and is denoted
by CONNG(u, v) (Rosenfeld, 1975).

A fuzzy graph G : (V, σ, µ) is connected if CONNG(u, v) > 0 for every u, v in σ∗. It is
acknowledged that throughout this paper, G is assumed to be connected.

If (u, v) is an arc of G and µ(u, v) > CONNG−(u,v)(u, v), then (u, v) is called α-strong arc,
if µ(u, v) = CONNG−(u,v)(u, v), then β-strong and if µ(u, v) < CONNG−(u,v)(u, v) a δ-arc
(Mathew & Sunitha, 2009). If all the arcs on a path are strong, then it is called a strong path
(Bhutani & Rosenfeld, 2003b).

In the event that the removal of an arc results in a reduction of the strength of connectedness
between any pair of nodes, the arc is called a fuzzy bridge (Mathew & Sunitha, 2009). Similarly,
if the removal of a node diminishes the strength of connectedness between any pair of nodes, then
that node is referred to as a fuzzy cut node (Mathew & Sunitha, 2009). A node is designated as
a fuzzy end node of G if it is connected to at most one strong arc (Bhutani & Rosenfeld, 2003a).

The sequence of arc strengths, denoted by {q1, q2, ...qm}, is a set of numbers that represents
the strength of each arcs of the fuzzy graph G : (V, σ, µ) where q1 ≤ q2 ≤ q2 ≤ ... ≤ qm−1 ≤ qm
(Altundag, 2021).

103



JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.9, N.2, 2024

3 Fuzzy Node Connectivity

Vertex connectivity of fuzzy graphs was first defined in 1975 by Yeh and Bang as the minimum
weight of a disconnection of a fuzzy graph (Yeh & Bang, 1975).

Definition 1. (Yeh & Bang, 1975) In the context of fuzzy graphs, a disconnection refers to a
vertex set, denoted by D, which, if removed, results in a disconnected or a single vertex graph.
The weight of D is defined to be Σv∈D{minµ(v, u) | µ(v, u) 6= 0}.

Definition 2. (Yeh & Bang, 1975) The vertex connectivity of a fuzzy graph is defined as the
minimum weight of a disconnection in G.

This definition depends on the disconnection of the fuzzy graphs and so this parameter is
more related to graphs than fuzzy graphs. In 2010, Mathew and Sunitha redefined the concept
of connectivity called fuzzy node connectivity regarding the strength of connectedness other
than disconnection (Mathew & Sunitha, 2010).

Definition 3. (Mathew & Sunitha, 2010) Let G : (V, σ, µ) be a connected fuzzy graph. S =
{v1, v2, ..., vm} is a fuzzy node cut if either, for some pair of nodes u, v ∈ σ∗ CONNG−S(u, v) <
CONNG(u, v) where u, v 6= vi, i = 1, 2, ...,m or G− S is trivial.

In Bhutani & Rosenfeld (2003b), it is shown that there exists at least one strong arc incident
on every node of nontrivial connected fuzzy graph. Motivated by this following definitions were
defined in (Mathew & Sunitha, 2010).

Definition 4. (Mathew & Sunitha, 2010) The strong weight of a set S is the sum of the minimum
of the weights of strong arcs incident on each node of S.

Definition 5. (Mathew & Sunitha, 2010) The fuzzy node connectivity of a connected fuzzy graph
G is defined as the minimum strong weight of fuzzy node cuts of G, denoted by κ(G).

The fuzzy node connectivity parameter applied to some types of fuzzy graphs and general
formulas are extracted.

Lemma 1. Let G : (V, σ, µ) be a fuzzy cycle ∀u ∈ V (G). Then

s(u) ≥ d(µ).

Proof. In a fuzzy cycle graph, the arcs are either β − strong or α − strong arcs (Mathew &
Sunitha, 2009). Since the strength of a vertex is equal to the smallest value of the adjacent
strong arcs, ∀u ∈ V (G) it is obtained that

s(u) ≥ d(µ).

Theorem 1. Let us consider a self-centered fuzzy cycle graph G : (V, σ, µ) of order n. We
assume that for i = 1, ..., n− 1, we have ei = (ui, ui+1) and en = (un, u1). Let 0 < t < s ≤ 1.
Case i)
1) If µ(ei) = t or µ(ei) = s where i = 1, ..., n;
2) If µ(e2i−1) = t and µ(e2i) = s for i = 1, 2, ..., n2 where n is an even integer;
3) If µ(e2i−1) = µ(en) = t and µ(e2i) = s for i = 1, 2, ..., n−12 where n = 4k + 1 and k = 1, 2, ...,
then

κ(G) = 2d(µ)

Case ii) If µ(e2i−1) = µ(en) = s and µ(e2i) = t for i = 1, 2, ..., n−12 where n = 4k − 1 and
k = 1, 2, 3, ..., then

κ(G) = min{h(µ), 2d(µ)}.
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Proof. Case i) In the case of a self-centered fuzzy cycle graph G satisfying one of the conditions
outlined in 1, 2, and 3, it can be determined that G is a multimin cycle, as it possesses at least
two weakest arcs. (Bhutani & Rosenfeld, 2003a). Moreover, it can be demonstrated that G
is a locamin cycle, given that each node is incident to a weakest arc. It can be stated that a
multimin cycle graph is a locamin cycle if and only if the cycle graph does not contain a fuzzy
cut node. (Bhutani & Rosenfeld, 2003a). Hence, fuzzy cycle graph G does not have a fuzzy cut
node.
Let S be a fuzzy node cut of G where |S| ≥ 2. It can be easily seen that each path between any
two nonadjacent nodes in a fuzzy cycle graph G is a strongest path since G is both a mutimin
cycle and a locamin cycle. For this reason, s(ui) = d(µ) for i =, 2, ..., n.
Since, the number of disjoint strongest paths between the nodes u and v in a fuzzy cycle graph
is at most 2 In accordance with Menger’s theorem, the cardinality of the minimal u-v reducing
set is a minimum of 2. (Mathew & Sunitha, 2013).
Therefore, if |S| = 2, then we get s(S) = |S|.d(µ)⇒ s(S) = 2.d(µ). Hence;

κ(G) = 2d(µ).

Case ii) Let G be a self-centered fuzzy cycle graph for k = 1, 2, 3, ... with n = 4k − 1 nodes
and let µ(e2i−1) = µ(en) = s, and µ(e2i) = t for i = 1, 2, ..., n−12 . Fuzzy cycle graph G is a
multimin cycle because it has more than one weakest arc. u1 is the only node that is incident
to two α − strong arcs where µ(e1) = µ(en) = h(µ). So u1 is a fuzzy cut node. Thus we get
s(u1) = h(µ) and s(ui) = d(µ) for i = 2, 3, ..., n ∀(ui) ∈ V (G).
Let S be a fuzzy node cut of a fuzzy cycle graph G.
a) If |S| = 1, then it is obtained that s(S) = s(u1) = h(µ) since S = {u1}. Therefore

κ(G) = h(µ) (1)

b) If |S| = 2, then for u1 ∈ S we have

s(S) = h(µ) + d(µ) (2)

and for u1 /∈ S we get

s(S) = 2d(µ) (3)

c) If |S| ≥ 3, then we obtain

s(S) ≥ |S|d(µ) ≥ 3d(µ) (4)

Hence, according to the definition by (1),(2),(3) and (4)

κ(G) = min{2d(µ), h(µ)}.

Theorem 2. If G : (V, σ, µ) is a regular fuzzy cycle graph then the fuzzy node connectivity value
of G is

κ(G) = 2d(µ).

Proof. Let G be a regular fuzzy cycle graph. Then for all e ∈ E(G) the values of µ(e) are either
constant or alternate arcs have the same membership values. For this reason, there are two
cases.
Case i) If all the values of µ(e) for all e ∈ E(G) are fixed, then all arcs of the regular fuzzy
cycle graph are weakest arc. Therefore each node in G is a central node and G corresponds to
a self-centered fuzzy cycle graph (Tom & Sunitha, 2015). By Theorem (1),

κ(G) = 2d(µ).
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Case ii) In the assumption that the membership values of the alternate arcs are identical, then
the regular fuzzy cycle graph is an even cycle (Gani & Radha, 2008). For this reason, fuzzy
cycle graph G is a self-centered fuzzy cycle graph (Tom & Sunitha, 2015). By Theorem (1),

κ(G) = 2d(µ).

Theorem 3. Let us consider a fuzzy graph by G : (V, σ, µ) which contains a single weakest arc.
If G∗ is a cycle graph, then the fuzzy node connectivity value of G is

κ(G) = q2

Proof. Let the arc (u1, u2) be the weakest are where u1u2...un represent the nodes of G. Thus
the nodes designated as u1 and u2 are fuzzy end nodes, while the nodes labelled ui for i =
1, 2, 3, ..., n are fuzzy cut nodes (Bhutani et al., 2004). It can be demonstrated that the function
µ(u1, u2) = d(µ) = q1 is a δ-arc, while the remaining arcs are α-strong. Consequently, the values
of s(ui) are equal to = qj , where i = 1, ..., n and j = 2, ...,m.
Case i) Let S be a fuzzy node cut of G. If |S| = 1, then for ui ∈ S where i = 3, ..., n.

κ(G) = min{qj | j = 2, ...,m} = q2 (5)

Case ii) If |S| ≥ 2, then s(S) =
∑n

i=1 s(ui) ≥
∑m

i=2 qj . In accordance with the definition of
fuzzy node connectivity, S should be chosen so that the strong weight of S is as small as possible.
Thus, S can be chosen where |S| = 2 such that s(S) = q2 + q3. In this case, we obtain

κ(G) = q2 + q3 (6)

By the equations (5) and (6),
κ(G) = q2.

Theorem 4. Let the fuzzy wheel graph Wn consist of nodes un as the fuzzy hub and nodes
u1, u2, ..., un−1 on the fuzzy cycle Cn−1. It is assumed that µ(un, ui) ≤ µ(e). In this case, the
value of membership for the arcs situated on the cycle, denoted by µ(e), are distinct for all
e ∈ E(Cn−1). It can be seen that the values of µ(un, ui) are equal to the weakest arc on the cycle
for i = 1, ..., n− 1. Consequently, the fuzzy node connectivity value is

κ(Wn) =

{
d(µ), if there is a FCN;
3d(µ), otherwise.

Proof. On the fuzzy wheel graph Wn, every path is a strong path. Therefore each arc of Wn is
either α − strong or β − strong. Thus the weakest arcs are β − strong. For i = 1, ..., n − 1 all
the nodes ui are adjacent to the fuzzy hub. Then, s(ui) = d(µ). Since µ(un, ui) ≤ µ(e), based
on the existence of the fuzzy cut node of Wn, there are two cases.

Case i) Let consider a fuzzy wheel graph Wn which contains a fuzzy cut node, represented by
x and let S = {x} be a fuzzy node cut of Wn. As the fuzzy hub is not a fuzzy cut node, fuzzy
cycle Cn−1 should contain the fuzzy cut node x. If and only if a node x on a fuzzy cycle is a
common node of two fuzzy bridges, then it is a fuzzy cut node. If and only if an arc of a fuzzy
cycle is a fuzzy bridge, then the arc is α− strong (Mathew & Sunitha, 2009).

For this reason, the incident arcs (u, x) and (x, v) on the fuzzy cycle at node x are α-strong.
Removal of node x from the wheel results in

CONNG−S(u, v) = d(µ) < CONNG(u, v) = min{(u, x), (x, v)}.
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Hence s(S) = d(µ) since s(ui) = d(µ) for i = 1, ..., n. For every fuzzy cut node S, we have
s(S) ≥ |S|d(µ). Thus

κ(G) = min{s(S)} = d(µ)

Case ii) Let consider a fuzzy wheel graph Wn without a fuzzy cut node. For any non-strong
arc (u, v) of the wheel Wn, every path between nodes u and v is the strongest path because
every path between u and v has the same strength. There are at most three internally disjoint,
strongest paths between u and v. According to Menger’s Theorem, the minimal u− v strength
reducing set has a cardinality of at most three (Mathew & Sunitha, 2013). As a result, we get
s(S) = 3d(µ) since |S| = |SG(u, v)| = 3 and

κ(G) = min{s(S)} = 3d(µ).

Theorem 5. Let the fuzzy wheel graph Wn consist of nodes un as the fuzzy hub and nodes
u1, u2, ..., un−1 on the fuzzy cycle Cn−1. It is assumed that µ(un, ui) ≥ µ(e). In this case, the
memberships values associated with the arcs within the cycle, denoted by µ(e), are distinct for
all e ∈ E(Cn−1) and for all values of i between 1 and n − 1, the value of µ(un, ui) is constant.
Thus, the fuzzy node connectivity value is

κ(Wn) = h(µ).

Proof. Case i) Let assume the value of µ(un, ui) be constant for i = 1, ..., n− 1 and µ(un, ui) >
µ(e) for e ∈ E(Cn−1). The fuzzy wheel graph Wn has at most one strong arc incident to the
nodes ui for i = 1, ..., n − 1 lying on the cycle. Therefore, each node, ui, can be defined as a
fuzzy end node. In order for a node to be defined as a fuzzy cut node, it must be incident to at
least two strong arcs. As a result, the nodes ui are not classified as fuzzy cut nodes (Bhutani &
Rosenfeld, 2003a). However, since µ(un, ui) > µ(e), the node un is a cut node and for i = 1, ..., n.
we get s(ui) = h(µ).
Assume that S denote a fuzzy node cut of Wn.
For |S| = 1, the only set is S = {un}. Thus s(S) = h(µ).
For |S| ≥ 2, s(S) = |S|.h(µ) ≥ 2h(µ).
Therefore by the definition

κ(G) = h(µ).

Case ii) Let assume the value of µ(un, ui) be constant for i = 1, ..., n−1 and µ(un, ui) ≥ µ(e) for
e ∈ E(Cn−1). Let un be the fuzzy hub. For all u, v ∈ V (Cn−1), the u−v paths of length two are
strongest paths. So for i = 1, ..., n− 1 all the arcs (un, ui) are strong. If µ(un, ui) = µ(e), then
the arcs on the cycle e ∈ E(Cn−1) are strong. Otherwise, they are δ-arcs. For each e ∈ E(Cn−1)
the value of µ(e) is different, so the single fuzzy cut node is un. s(ui) = h(µ) since un is adjacent
to all nodes ui for i = 1, ..., n.
Let S be a fuzzy node cut of Wn.
For |S| = 1, s(S) = h(µ) where S = {un}.
For |S| ≥ 2, s(S) ≥ 2h(µ). Thus

κ(G) = min{s(S)} = h(µ).

Theorem 6. Let the fuzzy wheel graph Wn consist of nodes un as the fuzzy hub and nodes
u1, u2, ..., un−1 on the fuzzy cycle Cn−1. If for i = 1, ..., n− 1, µ(un, ui) values are constant and
for e ∈ E(Cn−1), µ(un, ui) < µ(e) then the fuzzy node connectivity value is

κ(Wn) =

{
d(µ), if there exist FCN;
2d(µ), otherwise.
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Proof. Let assume Wn be a fuzzy wheel graph and the value of µ(un, ui) be constant for
i = 1, ..., n− 1 and µ(un, ui) < µ(e) for e ∈ E(Cn−1). On the fuzzy wheel graph Wn, every path
is a strong path. Therefore each arc of Wn is either α-strong or β-strong. All the arcs (un, ui)
are β-strong and µ(un, ui) = d(µ), since un is adjacent to all ui nodes and µ(un, ui) < µ(e)
for all e ∈ E(Cn−1). Thus un, the fuzzy hub, is not a fuzzy cut node. Hence for i = 1, ..., n,
s(ui) = d(µ) and s(S) = |S|d(µ) where S represents a fuzzy node cut of Wn.

Case i) Let consider a fuzzy wheel graph Wn which contains a fuzzy cut node, represented by
x and let S = {x} be a fuzzy node cut of Wn. If x is a common vertex of at least two fuzzy
bridges, then it is a fuzzy cut node. Also, if and only if the arc is α-strong, an arc is a fuzzy
bridge. Therefore, it can be concluded that x is incident to the α-strong arcs (y, x) and (x, z)
where y, z ∈ σ∗(Wn).
Let |S| = 1 for S = {x}, since

CONNG−S(y, z) = d(µ) = q1 < CONNG(y, z) = qi, i = 2, ...,m

then s(S) = |S|d(µ) = d(µ).
Let |S| ≥ 2, then s(S) = |S|d(µ) ≥ 2d(µ). By the definition we get the result

κ(G) = d(µ).

Case ii) Let Wn do not have a fuzzy cut node. Therefore |S| ≥ 2. Thus s(S) = |S|d(µ) ≥ 2d(µ).
In the case of an arc (u, v) of the fuzzy wheel Wn that is not strong, it can be stated that each
path between the nodes u and v is the strongest path, given that every path has the same
strength between u and v, which lie on the fuzzy cycle Cn−1. According to Menger’s theorem,
the number of internally disjoint strongest pathways between nonadjacent nodes in a fuzzy cycle
Cn−1 is at most two (Mathew & Sunitha, 2013). Therefore, the cardinality of the smallest set
that minimizes the strength of connectivity between these nodes is at least two.
Therefore if |S| = 2, then we get s(S) = |S| = d(µ)⇒ s(S) = 2d(µ). Hence

κ(G) = 2d(µ).

Theorem 7. Let G : (V, σ, µ) be a fuzzy star graph. The fuzzy node connectivity value of G is

κ(G) = d(µ).

Proof. Let G be a fuzzy star graph with n nodes where v represents the node of degree n − 1
and ui represents the nodes of degree one for i = 1, ..., n. Since the arcs (v, ui) are α − strong
arcs, all the paths between two nodes are strong. Besides the node v is adjacent to all ui for
i = 1, ..., n, v is a fuzzy cut node. Let S be a fuzzy cut set of G.
If |S| = 1, then S = {v} and s(v) = min{qi | i = 1, ...,m} = q1 = d(µ).
If |S| ≥ 2, then s(S) =

∑
i=1 s(ui) ≥

∑
i=1 qi, qi ∈ µ(e), e ∈ E(G). Thus the fuzzy node

connectivity value is

κ(G) = d(µ).

4 Algorithms

4.1 Algorithm 1

An algorithm to find the strength of connectedness between any two nodes in a fuzzy graph
G : (V, σ, µ) is defined by Altundag in (Altundag, 2021) given below.
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• Step 1. Write the adjacency matrix of the fuzzy graph G as matrix A.

• Step 2. Obtain the matrix AA by replacing the diagonal elements with ∞ of the matrix
A.

• Step 3. If min{AA[i, k], AA[k, j] > AA[i, j], then write C[i, j] = min{AA[i, k], AA[k, j]},
otherwise C[i, j] = AA[i, j] as the matrix of strength of connectedness.

If this algorithm applies to a fuzzy graph G, then the results are obtained as:

1. The strength of connectedness between each nodes of G are obtained.

2. Determines the strong arcs where AA[i, j] 6= 0. If AA[i, j] < C[i, j], then (i, j) is a δ−arc
and if AA[i, j] = C[i, j], then (i, j) is an α−strong arc or a β−strong arc.

3. The strong weights of each nodes are obtained by s(i) = min{AA[i, j]|AA[i, j] = C[i, j]}

Example 1. Let G : (V, σ, µ) be a fuzzy graph where σ∗ = {a, b, c, d} with µ(a, b) = 0.1,
µ(b, c) = 0.4, µ(c, d) = 0.3, µ(d, a) = 0.2 and µ(a, c) = 0.2. When the algorithm is applied
the matrix AA, the adjacency matrix with ∞ on the diagonals, and the strength of connected-
ness matrix C are obtained.

AA[i, j] =


∞ 0.1 0.2 0.2
0.1 ∞ 0.4 0
0.2 0.4 ∞ 0.3
0.2 0 0.3 ∞



C[i, j] =


∞ 0.2 0.2 0.2
0.2 ∞ 0.4 0.3
0.2 0.4 ∞ 0.3
0.2 0.3 0.3 ∞


The results are obtained according to the above matrices are given in detailed.

1) The strength of connectedness value between each nodes of G:
CONNG(a, b) = 0.2, CONNG(a, c) = 0.2, CONNG(a, d) = 0.2,
CONNG(b, c) = 0.4, CONNG(b, d) = 0.3, CONNG(c, d) = 0.3.

2) Strong arcs of G:
AA[a, b] = 0.1 < C[a, b] = 0.2⇒ (a, b) δ-arc,
AA[a, c] = 0.2 = C[a, c] = 0.2⇒ (a, c) strong arc,
AA[a, d] = 0.2 = C[a, d] = 0.2⇒ (a, d) strong arc,
AA[b, c] = 0.4 = C[b, c] = 0.4⇒ (b, c) strong arc,
AA[c, d] = 0.3 = C[c, d] = 0.3⇒ (c, d) strong arc.

3) The strong weights of each nodes of G:
s(a) = min{(a, c), (a, d)} = min{0.2, 0.2} = 0.2,
s(b) = min{(b, c)} = min{0.4} = 0.4,
s(c) = min{(c, a), (c, b), (c, d)} = min{0.2, 0.4, 0.3} = 0.2,
s(d) = min{(d, a), (d, c)} = min{0.2, 0.3} = 0.2.

4.2 Algorithm 2

An algorithm to find the node connectivity of a fuzzy graph G : (V, σ, µ) is defined by Altundag
in (Altundag, 2021). This algorithm uses the Algorithm 1 in 4.1 and assumes CONNG(i, j) = p
and v ∈ σ∗.
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• Step 1. Determine the strong weights of each nodes of G by using the Algorithm 1.
s(i) = min{AA[i, j]|AA[i, j] = C[i, j]}

• Step 2. Find a set S ⊆ σ∗ which is a fuzzy node cut for G.

• Step 3. Evaluate the value of s(S) using the strong weights found in Step 1 of the nodes
in S.

• Step 4. Find the adjacency matrix of the graph G − S by replacing the entries on the
columns and the rows, corresponding to the nodes in S, of the adjacency matrix G with
zero.

• Step 5. Obtain the matrix of strength of connectedness C for the fuzzy graph G − S
by using the Algorithm 1. For the Step 1 of the Algorithm 1 use the adjacency matrix
obtained in Step 4 above.

• Step 6. If q < p, then K = s(S) where C[i, j] = p for the fuzzy graph G and C[i, j] = q
for the fuzzy graph G− S, otherwise go to Step 2.

• Step 7. Repeat the Steps 2 through 6 until there is no other set S exists in Step 2.

• Step 8. Find the minimum of all the values of K which gives the node connectivity value
κ(G) of the fuzzy graph G.

5 Conclusion

Fuzzy graphs are a special type of graphs. Because in real-life problems modelling by grading the
relations will be more closer to reality. In situations where there is ambiguity surrounding the
nodes and/or links, fuzzy graphs emerge as a particularly useful tool. Therefore, fuzzy graphs
represent all systems more accurately than classical graphs, depending on the uncertainty or
fuzziness of the system parameters. Nevertheless, there is a scarcity of research examining the
vulnerability of fuzzy graphs. Considering the usage areas of fuzzy graphs, this is an important
deficiency. In this paper, the node connectivity of some types of fuzzy graphs are studied. The
general formulas have been derived for fuzzy wheel graphs, fuzzy cycle graphs, and fuzzy star
graphs.Additionally, an algorithm is provided for determining the strength of connectedness
between any two nodes, as well as another algorithm for evaluating the node connectivity of the
given fuzzy graph.
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